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Boundary-layer separation at a free streamline 
Part 2. Numerical results 
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An asymptotic solution of the boundary-layer equations, valid just upstream 
of a free streamline attached to the sharp trailing edge of a body, is compared 
with a numerical solution for the boundary-layer flow on a finite flat plate set 
perpendicular to a uniform stream. An arbitrary multiplicative constant in the 
asymptotic expansion, arising from an eigenfunction, is evaluated by requiring 
the skin friction to agree with a numerical value close to the free streamline. 
Using this value, the velocity profiles, computed from the asymptotic expan- 
sion, are in excellent agreement with the numerical solution. 

1. Introduction 
In  a recent paper, Ackerberg (1970) [hereafter referred to as I] proposed an 

asymptotic theory to describe the nature of the boundary-layer flow just up- 
stream of a free streamline which is attached to the sharp trailing edge of a body. 
These problems are unusual because the pressure distribution in the potential 
flow exhibits a singularity which appears in the boundary-layer equations as a 
forcing term. It is of interest to know how this singularity influences the boundary- 
layer motion and the skin friction near the edge. The work presented here 
compares a numerical solution of the boundary-layer equations for the flow over 
a finite flat plate set perpendicular to a uniform stream, shown in figure 1, with 
the asymptotic theory. Outside the boundary layer, a potential motion of the 
KirchhofF-Rayleigh type with free streamlines attached at %he sharp edges, is 
assumed. 

An explicit finite difference technique was used to solve the boundary-layer 
equations in Mises variables. This method was introduced by Mitchell & Thomson 
(1958), and has been used by Ackerberg (1968) to study the development of 
the boundary-layer motion in a thin film flowing along a vertical plate. The new 
features which enter o w  calculation are as follows: (1) The separation at the 
free streamline occurs with an extremely favourable pressure gradient which is 
singular at the edge; thus, the small step size of the explicit technique is useful 
in suppressing the truncation errors. (2) An asymptotic formula derived by 
Brown & Stewartson (1965) is incorporated into the calculation of the velocity 
at  the outermost point of the boundary layer. (3) A spurious singularity enters 
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the numerical solution as a result of truncating a series expansion, valid near the 
wall, which is used to calculate the skin friction. 

In $ 2, the problem is formulated mathematically and cast into finite difference 
form. The asymptotic results in I are extended and summarized in $3, and in 
$4 a comparison is made between the numerical results and the asymptotic 
theory. The results and conclusions are discussed in $ 5 .  It was found that 
accurate numerical results can be obtained close to the free streamline in spite 
of the large truncation errors, and excellent agreement was obtained with the 
asymptotic theory. 

2. Mathematical and numerical formulations 

Mathematical formulation 

A co-ordinate system is introduced with the 5 axis coincident with the plate and 
directed toward a, free streamline, and the ?!j axis perpendicular to it and directed 

Y' 

------- 

- fib 1 Free streamlines 
r' . constant pressure p = p m  

Boundary laycr ' 

FIGURE 1. Geometry of flat plate set perpendicular to a uniform stream. 

into the fluid (see figure 1). The origin is at the midpoint of the plate. Denoting 
dimensional variables by bars, the following non-dimensionalization is 
introduced: 

x = Z I L ,  Y = jjRet/L, u = U/U& v = @Re8/U0, 

$(x, Y )  = T ( E ,  ?!j) Re*/U, L. (2.1) 1 
Here u, v are the velocity components in the x and y directions, and $ is the 
stream function with u = a$/a Y and v = - a$/ax. The length L = 4(n + 4)-l1,1 
being the half-breadth of the plate, U, is the fluid speed along a free streamline, 
Re = pUoL/,u is the Reynolds number, and p and ,u are the constant fluid density 
and viscosity. In place of the variable x, it is convenient to introduce the new 
independent variable 

s = ue(x), (2.2) 
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where U,(x) is the non-dimensional x component of velocity just outside the 
boundary layer determined from the potential flow solution. In the problem 
considered here, (0  6 s 6 l) ,  and in most applications U,(x) increases mono- 
tonically as the free streamline is approached so the transformation will be bi- 
uniform. As dependent variable we use 

(2.3) P(S7 $1 = u2(s, $ ) / s2  (0 6 P < 1). 

Substituting (2.2) and (2.3) into the boundary-layer equation written in Mises 
co-ordinates (see Goldstein 1938, p. 126) we obtain 

ap/as = (2/s)(i-~)+[s/Ud(s)]p9a2p/a$z (0 < s < 1, o 6 $ < a), (2.4) 

where u;(S) = d ~ , ( x ) / d x  = a(i + 9 ) 3 / ( i - s 2 ) .  (2.5) 

x(s )  = s(s2 + 3)/( 1 + s2)2 + 4 sin-l[2s/( 1 + s2)], (2.6) 

This last equation follows from the relationship 

which may be derived from the potential solution given in Lamb (1945, p. 99). 
Here the value of the inverse sine is in the range (0 ,  in). A singularity in U; is 
apparent when s+ 1; in terms of X, the singularity is of 0[(1 -?)-&I for X + l .  

The usual boundary conditions at  the wall and at  the edge of the boundary 
layer require 

p(s,O) = 0 (0 6 s < l),  (2.7) 

and p(s ,$)+l  for $+m (0  6 s < 1). (2.8) 

We also require an initial condition to specify that the boundary-layer flow starts 
at the stagnation point 0 with a velocity profile given by the Falkner-Skan 
similarity solution with parameter p = 1. This solution may be obtained in our 
co-ordinate system by putting UL = a (i.e. the limiting value for s + O )  and 
assuming 

P ( S ,  $1 = F(5L where 5 = $/s. (2.9) 

Substituting (2.9) in (2.4) leads to a non-linear ordinary differential equation 
for F(C) which should be solved with some care due to a singular point at  5 = 0. 
It might be thought desirable to obtain a number of terms in an asymptotic 
expansion near s = 0; however, experience has shown that the flow near the 
free streamline is quite insensitive to the initial condition, and putting F ( 5 )  = 1 
a t  a small value of s (which we took as s = 0.1) does not affect the final results. 

Finite diflerence equations 
Introduce the finite difference notation 

Pj,k = P('j9 1c'k), aP/as = (pj+l ,k-Pj ,k) /ASfo(As) ,  (2.10) 

and a2P/a$2 = (Pi,k+l- 2pj,k+pj,k-l)/(A1c')2 + o[(A1c')21, (2.11) 

where As and A$ denote constant mesh widths in the s and $ directions. Let 
the plate be specified by k = 1, the point at  the outer edge of the boundary 
layer by k = M and the initial station, s1 = 0.1, by j = 1. When (2.10) and 
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(2.11) are substituted in (2.4), using (2 .5 ) ,  we obtain the explicit finite difference 
formula 

Pj+l,lC =P)i,,+ (2As/sj)(l-P)i,,)+4hsj(1-$) 

x (1 + ~ g ) - ~ ~ ~ , ~ ( ~ j , k + ~ - 2 p ~ , ~ + p ) i , ~ - ~ ) ,  (2.12) 

with h = As/(A$)2. At any internal point 3 < k Q M -  1, (2.12) will be used to 
computepj+,, , from the valuespj,,; the other points require special consideration. 

The boundary condition at the wall (2.7) and the initial condition (2.9) are 
satisfied if 

pj,, = 0 for j > 1, (2.13) 

and P , , ~  = lWk/sl) for 1 < k < M .  (2.14) 

We cannot choose s, = 0 because (2.4) is singular at  s = 0. 
The point at  the edge of the boundary layer, k = M ,  is computed using an 

asymptotic formula derived by Brown & Stewartson (1965), which we have 
expressed in Mises co-ordinates, i.e. 

pi --f 1 +ao ykn exp [ - $-"/G(s) +a, $1 for $-+GO, (2.15) 

where ao, a1 and n are constants, for a fixed s, which are determined by fitting 
(2.15) to the three valuespj,, for k = M-3, M -  2, and M -  1. Here 

G(s)  = 4 U , ( X ) ~ X  = 8 ~ ~ ( 1 + ~ - " ) - ~ .  (2.16) 
!OX'"' 

Once values for czo, a, and n are found, (2.15) is used to compute This 
value is assigned to the point at  the edge of the boundary layer and a test is 
made to determine if pf,M( = uj,,/&) is less than a preassigned tolerance, say 
0.9999. If it is, a new point is added a t  the edge of the boundary layer by putting 

= 1.t It is also possible to delete points at  the edge if pj,,,,, is greater 
than the tolerance. 

Special care is required for pi, 2. This can be seen from the series expansion of 
szp2 (=  u2) near the wall, 

s2p2 = a2$-(8/3a)(sLl~)$~-(4/3a4)(sT1Ti)2$2-c@ for 2//.+0. (2.17) 

Here the skin friction, rw = u(au/a@)l,,, = ;a2, and c is a constant chosen to 
make the truncated series accurate. It is apparent that a2p/a$2 is infinite at  
$ = 0 and large truncation errors may occur. To avoid them, the following 
procedure was adopted. At a given station si, (2.17) is applied t o  each of the 
values pj, and pj, with $ = A$ and $ = 2A$, respectively. The constant c is 
then eliminated between the two equations to yield 

A = (2$~3,, -p$, 3) 83 [(24 - 2 )  A$]-' + (2%/3) sUi (A$)* [ (28  - 1) A4I-l 

+ g(23 - 1) (~LiL)~A9k[(2* - 1) A2]-l, (2.18) 

where A = a2. Using the best value of A at the previous step sj-,, we solve (2.18) 
by a fixed point iteration, i.e. An+, = H ( A n ) ,  where H ( A )  is the function on the 

t Alternatively, (2.15) could be used to compute the value p j ,  M+l  and other values 
(if necessary) until the tolerance is exceeded. 
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right-hand side of (2.18). After three iterations, 6 or 7 significant figures were 
obtained and the value QA gave a running account of the skin friction. The 
conskant cis then determined by substituting A into one of the original equations. 
The value pj+l, is found using the forward difference 

P j+1,2 = pi, 2 + (a~ /as ) j ,  2As + o[(As)'I 

= p i ,2+  (2/sj) (1 - p j , ~ )  AS + 4 g i  -s;) (1 + s ; ) - ~ A s [ ~ &  a2(p/a@21~,~, (2.19) 

where (2.4) has been used to obtain the last line. The quantity @4a2p/a$2]l,2 
can be evaluated analytically using the series expansion (2.17). After some 
algebra we find 

[p i  a2p/8$2]j,2 = - ~ ~ ~ ( 2 s ~  Ul+ [( 15ac/4) - (20/3a6) (sj Ul)3]  A@}, (2.20) 

where U:, a, and c are to be evaluated a t  sj as the suffix on the left-hand term im- 
plies. Substituting (2.20) in (2.19) yields p'i+l,2 with an error of O[AsA@%,  AS)^]; 
however, since values of for k > 3 will be known only with an accuracy of 
O[(A@)2], the error in pi,2 is likely to be the same. 

To prevent the growth of truncation errors during the calculation, a stability 
criterion based on the linear heat conduction equation was used. This requires 

As/(A$)2 < min U:/(2sp)) 2 min (U;/Zs) = 0-57496 .... (2.21) 
(OGSGl) (OGS41) 

If a fixed As was used throughout the interval, (2.21) must be satisfied for 
stability. However, since the smallest value of (UL/2s) occurs for so = 0.3626.. ., 
larger step sizes may be taken on either side of so. 

3. Summary and extension of asymptotic results 

form 
An asymptotic solution valid near the wall, for s+ 1, has been found with the 

$(t, y) = 2*ktP{Po(9) + Ctypy(q) + C2t27p2,(9) + C3t3yp3,(7) + tFl(7) + o(t)}, (3.1) 

where the similarity variable 

7 = 2ikY/t4, t = l-U,(x) (t 2 O ) ,  (3.2) 

k is a constant which may be found from the potential flow solution,? C is a 
constant which depends on the boundary-layer flow upstream, and the functions 
F,(7) are solutions of the following ordinary differential equations: 

P;--FoP;++P;2+ 1 = 0, (3.3) 

(3-5) 

P,(O) = 0 = P&(O) (01 2 O ) ,  (3.6) 

~ , " , - ~ ~ o ~ ~ , + ( n y + l ) F ~ P ~ , - [ n y + ~ ] F , " ~ ~ ,  = G,, (n = 1,2 ,3) ,  (3.4) 

p': -:pop';+ 2p'p'  - 9p"p - 1 -gi;, 0 1  4 0 1 -  

subject to the boundary conditions 

t For the flow in figure 1, k = 2-4. 
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and 
Fa(?) must not contain any exponentially large terms for ?->oo. (3.7) 

Here, y = 0.3157.. . is an eigenvalue which was computed in I, and 

} (3.8) 
G, 0, G,, = ( Y + ~ ) F , F ; - ( ~ + $ ) F : ,  

G3, = ( y  + 2) F,F& + (By + 2) F;F2, - (37 3.1) F”jF&. 

The function 3; was calculated in I. The functions Fny (n = 1 , 2 , 3 )  and Fl have 
been obtained numerically using a method described in the appendix and are 
shown in figures 2 and 3. 
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FIGURE 2. F,(T), B’; (7) and Fl (q ) ,  F;(T)  versus 7. 
F’;(O) = 0.88547 ..., F;(O) = 1.0. 

The streamwise velocity component and the skin friction are 

u(t, Y) /u ,  = 2k%( 1 - t)-1 pi(?) + CtWj(?/) 

+ C2tW;ly(r)  + C3t3797;,(7) +mi(?) + o(t)] ,  (3.9) 
and 

Tw = &/a  YI p = o  = (2*k)3 t-‘[a, + a,CV + a2, C2t2, + a3,C3t37 + a,t + ~ ( t ) ] .  (3.10) 

The constants a, = F:(O) were calculated numerically and have the values 

a, = 3.014 ..., a, = 1, aZy = -2.700... x a3, = 4.145 ... x lop4 

and a, = -0*8854.. . .  
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Equation (3.10) indicates that, as the free streamline is approached, the skin 
friction is singular to first order and proportional to (1  - Z)-*. The coefficient of 
this term depends only on the potential flow solution, via k, and the boundary- 
layer flow upstream influences the skin friction, starting at the second-order 
term, through the constant C. This constant arises in the asymptotic theory as 
the arbitrary multiple of the eigensolution F7(7). In  the following section the 
numerical results will be compared with the theory presented here. 

I 
1.0 2.0 

71 

4. Comparison of numerical results with the asymptotic theory 
The finite difference equations in $ 2  were programmed for an IBM 360-50 

in double precision, and a CDC-6600 in single precision. Four runs were made 
with A@ = 0 ~ 0 4 , 0 ~ 0 2 , 0 ~ 0 1 , 0 ~ 0 0 5  (hereafter these runs are referred to as 1 , 2 , 3 , 4  
respectively). Only run 4 was made on the CDC-6600 with As = 1.40625 x 10-5. 
At the start of this calculation a t  s1 = 0.1, 137 points of the stagnation point 
profile were taken inside the boundary layer. The running time, after 64,000 
steps, was approximately 26 minutes, and the final profile had 509 points. To 
satisfy the stability condition (2.21), As was reduced by a factor of 4 as A@ 
decreased, and this reduction allowed some estimate to be made ofthe truncation 
errors. It was found that for s > 0.955 the results could not be considered 
reliable due to a singularity inherent in the solution of (2.18) when s-f 1. This 
will be discussed later. 

Some velocity profiles from run 4 are shown in figure 4. At least three significant 
figures were obtained in this calculation for s < 0.955. The skin frictions near 
the free streamline, for all runs, are displayed in figure 5. Values of rW for 
s > 0.955 have been included for a comparison with the asymptotic theory. 
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4u, 
FIGURE 4. Velocity profiles from run 4 a t  various values of S. Curve: 1, s = 0.100, 
z = 0.221; 2, s = 0.370, z = 0.701; 3, s = 0.505, z = 0.846; 4, s = 0.775, z = 0.979; 
5, s = 0.955, z = 0.999. 

c 

L 

2-0 L 
I 

0.91 0.93 0.95 0.9 7 0.99 

u, = 1--t 

FIGURE 5. Comparison of skin frictions from the finite difference calculations with the 
asymptotic theoretical result. Curve 5,  theoretical result using (3.10) with the value 
C = -2.989 obtained by requiring (3.10) to  agree with the numerical value from run 4 
a t  s = 0-955. Numerical results: curve 4, A@ = 0.005; curve 3, A@ = 0.01; curve 2, 
A$ = 0.02; curve 1, A$ = 0.04. 
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To compare the numerical results with the asymptotic theory, the constant 
C in (3.1) must be evaluated. C was calculated by requiring that the skin friction, 
computed from (3.10), agree with a numerical value from run 4 for a small 
value of t. The solution of the resulting cubic equation in C, which had one real 
root, gave the desired value. The variation of C with t ,  i.e. various positions 
where C was calculated, is shown in table 1. Note the small variation of C for 

Z / l  t C 7, (m 4) 7:: 

0.9936 0.135 - 2.944 2.0827 2.0398 
0.9974 0.090 - 2.974 2-7215 2.7076 
0.9994 0.045 - 2.989 3.9446 3.9446 
0.9996 0.036 - 2.986 4.3775 4-3751 

TABLE 1. Variation of C with t .  C is determined by requiring (3.10) to agree 
with a numerical value of 7, from run 4 

the large variation of rw. Adopting the value of C corresponding to t = 0.045, 
a skin friction curve was predicted from (3.10) and is shown in figure 5 as the 
dashed curve. In  the last column of table 1 some of the predicted values, r$, 
are given to make a more detailed comparison. 

Velocity profiles were computed from the asymptotic theory for s = 0.865, 
0.9325, 0.955, and are displayed in figure 6 as the dashed curves. The agreement 
with the numerical solution (solid lines) is quite good in view of the fact that the 
asymptotic expansion (3.1) is not uniformly valid for large Y as discussed in I. 

4 
FIGURE 6. I, velocity profiles at 8 = 0.865 (Z/Z = 0.9936), C = -2.9439; 11, velocity 
profiles at 8 = 0.9325 (Z/Z = 0*9986), C = -2.9845; 111, velocity profiles a t  s = 0.955 
(Z/Z = 0*9994), C = -2.9889; , run 4 numerical; --------, computed 
from the asymptotic solution (3.9). 
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5. Results and conclusions 
The good agreement between the numerical results and the asymptotic theory 

provides convincing evidence that the boundary-layer flow near a free stream- 
line is well understood. However, the numerical method had these drawbacks: 

1. The explicit technique required a very small step size for our most accurate 
run although a compensating factor is the suppression of the truncation errors 
that arise from large s derivatives near the free streamline. Recent results, 
using an implicit technique, indicate that accurate solutions can be obtained 
near s = 0.955 with a much larger step size of As = 0.001. 

2. The equation for the fixed point iteration (2.18) has a singular solution of 
the form 

A .c(A@)*(1-s)-Q for s + 1 .  (5.1) 

U ; C C ( ~ - S ) - - ~  for S + I .  ( 6 . 2 )  

This is due to the coefficients which contain the singular term 

The solution (5.1) was apparent in the numerical results very near the free 
streamline, and i t  is not known how this undesirable feature can be eliminated 
if Mises variables are used. Current calculations using the variables (u , v )  and 
(8, Y )  avoid this difficulty, and i t  is possible to  approach the free streamliric more 
closely. 

Some care is required in using any numerical method near the free streamline. 
This can be seen from the form of the streamwise velocity profile at the separation 
point derived in I; it  is 

U,( Y )  = b, Y% + b, Yp0S7-. + b, Y1.508.- + b 3 Yp929-. + b 4 Y 2  + . .. (5 .3)  

where the bi’s are constants. At any point upstream, say s = 1 - E for E > 0,  the 
velocity profile is analytic and can be represented by a power series in Y.  The 
transition from an  analytic profile to  (5.3) will undoubtedly lead to large trun- 
cation errors. 

for s = 1, 
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